Acta Astronautica

Volume 117, December 2015, Pages 222-230

Dynamics of multi-tethered pyramidal satellite formation

D. Alary^a, K. Andreev^b, P. Boyko^b, E. Ivanova^c, D. Pritykin^d, ♣, ■, V. Sidorenko^e, C. Tourneur^a, D. Yarotsky^f, g

- a Airbus Defense and Space/Space Systems, Toulouse, France
- b Telum LCC, Moscow, Russia
- ^C Airbus Group Innovations, Moscow, Russia
- d Moscow Institute of Physics and Technology, Moscow, Russia
- e Keldysh Institute of Applied Mathematics, Moscow, Russia
- [†] Datadvance, LLC, Moscow, Russia
- 9 Institute for Information Transmission Problems, Moscow, Russia

Received 11 March 2015, Revised 28 July 2015, Accepted 13 August 2015, Available online 21 August 2015

Available to download at www.sciencedirect.com

Highlights

- · We model the dynamics of a multi-tethered pyramidal satellite formation.
- The formation's nominal motion is rotation about symmetry axis.
- We propose a control strategy that allows stabilizing the nominal spin state.
- We show that the formation can be implemented and made stable.
- Such formation can be used to co-locate satellites at a slot in geostationary orbit.

Abstract

This paper is devoted to the dynamics of a multi-tethered pyramidal satellite formation rotating about its axis of symmetry in the nominal mode. Whereas the combination of rotation and gravity-gradient forces is insufficient to maintain the mutual positions of satellites, they are assumed to be equipped with low-thrust rocket engines. We propose a control strategy that allows the stabilization of the nominal spin state and demonstrate the system's proper operation by numerically simulating its controlled motion. The discussed multi-tethered formations could be employed, for example, to provide co-location of several satellites at a slot in geostationary orbit.

Keywords

Tethered satellite systems; Satellite formations; Dynamics; Control

▲ Corresponding author. Tel.: +7 9154577893.
Copyright © 2015 IAA. Published by Elsevier Ltd. All rights reserved.